Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Cadmium(II) thio- and selenocyanate complexes of 3,3'-bis(1,2,4-triazol-4-yl)-1,1'-biadamantane, a ligand designed with an 'extended nanodiamond' aliphatic platform

Ganna A. Senchyk, ${ }^{\text {a }}$ Andrey B. Lysenko, ${ }^{\text {a }}$ Eduard B. Rusanov, ${ }^{\text {b }}$ Alexander N. Chernega ${ }^{\text {b }}$ and Konstantin V. Domasevitch ${ }^{\text {a }}$
${ }^{\text {a }}$ Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, Murmanska Street 5, Kyiv 02094, Ukraine
Correspondence e-mail: dk@univ.kiev.ua
Received 25 May 2010
Accepted 2 June 2010
Online 5 June 2010

In the structures of the $\mathrm{Cd}^{\mathrm{II}}$ pseudohalide coordination polymer poly[[diaquabis $\left[\mu_{2}-3,3^{\prime}\right.$-bis(1,2,4-triazol-4-yl)-1, 1^{\prime}-biadam-antane- $\left.\kappa^{2} N^{1}: N^{1}\right]$ cadmium(II)] dithiocyanate dihydrate], \{[Cd$\left.\left.\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), and the isomorphous selenocyanate analogue, $\left\{\left[\mathrm{Cd}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{NCSe})_{2} \cdot-\right.$ $\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (II), the $\mathrm{Cd}^{\mathrm{II}}$ cations occupy inversion centres and have octahedral $\mathrm{CdN}_{4} \mathrm{O}_{2}$ environments, completed by four N atoms of the organic ligands $[\mathrm{Cd}-\mathrm{N}=2.316$ (2) and 2.361 (2) \AA for (I), and 2.313 (3) and 2.372 (3) \AA for (II)] and two trans-coordinated aqua ligands $[\mathrm{Cd}-\mathrm{O}=2.3189$ (15) \AA for (I) and 2.323 (2) \AA for (II)]. In each compound, the ligand displays a bidentate $N^{1}: N^{1^{\prime}}$-bridging mode, connecting the metal centres at a distance of $14.66 \AA$ into two-dimensional nets of $(4,4)$-topology, while the uncoordinated thio(seleno)cyanate anions reside inside the net cavities. Hydrogen bonding between the water molecules, anions and 1,2,4triazole N atoms supports the tight packing, with an interlayer distance of 6.09 A.

Comment

Cage hydrocarbons, such as adamantane, diamantane and related nanodiamond species, provide unique molecular scaffolds for a wide variety of accurate and geometrically elegant ligands supporting the structures of robust and thermally stable metal-organic frameworks (MOFs). Most efforts in this area have been focused on a single adamantanesupported platform containing two or four carboxylate functions and their further multi-connector roles in the MOFs of adamantane-1,3-dicarboxylate with $\mathrm{Zn}^{\mathrm{II}}$ (Nielsen et al., 2008) or $\mathrm{Eu}^{\text {III }}$ (Millange et al., 2004), and adamantane-1,3,5,7-tetracarboxylate with $\mathrm{Cu}^{\mathrm{II}}$ (Chen et al., 2000), $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ (Kim et
al., 2001) or $\mathrm{Cd}^{\mathrm{II}}$ (Rosi et al., 2005). Even more versatile possibilities may be anticipated for heteroaryl-functionalized adamantanes. Mono- and bitopic 1,2,4-triazole (tr) derivatives built up on the adamantane backbone have offered an interesting perspective in the design of $\mathrm{Cd}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ (Senchyk et al., 2009) and $\mathrm{Mo}^{\mathrm{VI}}$ coordination polymers (Lysenko et al., 2010). The remarkable binding ability of the tr heterocycle affords cationic pinwheel-like clusters, $\left[\mathrm{Cd}_{2}\left(\mu_{2}-\operatorname{tr}\right)_{3}\right]$ or $\left[\mathrm{Cd}_{3}\left(\mu_{2}-\operatorname{tr}\right)_{6}\right]$, serving as multiconnected nodes, whilst the behaviour of the pseudohalide counter-anions displays more complicated character, either integrated in the framework bridging the coligands or as uncoordinated units. However, such applications of adamantane derivatives are significantly limited from a synthetic perspective. In particular, the inertness of 1,3,5-triand 1,3,5,7-tetrasubstituted compounds in the typical Ritter and Koch-Haaf reactions makes the most attractive types of polyfuntional molecules inaccessible. We propose a strategy aiming to explore the $1,1^{\prime}$-biadamantane platform, which marries the particular structural and reactive attributes of adamantane in the development of novel polyfunctionalized modules for the preparation of porous frameworks with distinct hydrophilic and hydrophobic surfaces. In continuation of this approach, we report here the crystal structures of the cadmium(II) thio- and selenocyanate complexes adopted by the prototypical extended linker 3,3'-bis(1,2,4-triazol-4-yl)-1,1'-biadamantane $\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)$, viz. $\left\{\left[\mathrm{Cd}\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{NCX})_{2}\right.$.$\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, where $X=\mathrm{S}$ for compound (I) and Se for compound (II).

Compounds (I) and (II) adopt an isomorphous twodimensional polymeric motif which includes extended hydrogen bonding. The asymmetric units of the unit cells contain a $\mathrm{Cd}^{\mathrm{II}}$ cation, a thio(seleno)cyanate anion, a coordinated $\operatorname{tr}_{2} \mathrm{ad}_{2}$ ligand, and one coordinated and one solvent water molecule. The $\mathrm{Cd}^{\mathrm{II}}$ cations lie on inversion centres and exhibit octahedral environments, involving four $\mathrm{N}(\mathrm{tr})$ atoms in the equatorial plane $[\mathrm{Cd}-\mathrm{N}=2.316$ (2) and 2.361 (2) \AA for (I), and 2.313 (3) and 2.372 (3) \AA for (II)] and two aqua molecules in the trans-axial positions $[\mathrm{Cd}-\mathrm{O}=2.3189$ (15) \AA for (I) and 2.323 (2) A for (II)] (Fig. 1). A comparable set of bond lengths in an $\mathrm{N}_{4} \mathrm{O}_{2}$ environment was also observed for $\left[\mathrm{Cd}_{2}(L)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, where L is di-4-pyridylamine (Krishnan et al., 2007). The ligands adopt an $N^{1}: N^{1^{1}}$-bridging role between two adjacent $\mathrm{Cd}^{\mathrm{II}}$ cations in two directions [related by the symmetry operations ($1-x, \frac{1}{2}+y, \frac{1}{2}-z$) and

Figure 1
The structure of (I), showing the atom-labelling scheme [the structure of (II) is isomorphous]. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii. Aliphatic H atoms have been omitted for clarity and dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $1-x, y+\frac{1}{2}, \frac{1}{2}-z$; (ii) $-1+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $-x, 1-y,-z$.]
$\left.\left(1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right)\right]$ at a distance of $14.66 \AA$, giving a square net (Fig. 2). Similar $M^{\text {II }}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (ligand) $)_{2}$ square-grid motifs have recently been reported for Cd and Cu complexes with 4,4'-bi-1,2,4-triazole (Huang et al., 2008; Govor et al., 2010), while in the case of the flexible bitriazole linker 1,2 -bis $(4 \mathrm{H}$ -1,2,4-triazol-4-yl)ethane, an alternative kind of polymorphic form supported by double bridging was also observed (Yi et al., 2005).

With relatively free rotation around the single $C-C$ bond linking two adamantane cores, the ligand displays an angular pseudo-gauche conformation and the corresponding dihedral angles defined by the three virtual bond vectors N3-C9, C9-C22 and C22-N6 ('tr-ad-ad-tr torsion') have approximate values of $72-73^{\circ}$. Thus, within the biadamantane core, the $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 22-\mathrm{C} 23$ torsion angle is -72.3 (3) ${ }^{\circ}$ in (I) and $-73.6(4)^{\circ}$ in (II). Such a conformation gives rise to extended undulating $\left(\mathrm{Cd}-\mathrm{tr}_{2} \mathrm{ad}_{2}\right)_{n}$ chains running along the crystallographic (211) and (211) axes. In the $\left[\mathrm{Cd}\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ layer, two opposing biadamantane linkers of each $\mathrm{Cd}_{4}\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)_{4}$ square are directed towards one another and stacked parallel [the shortest distance is $\mathrm{C} 14 \cdots \mathrm{C} 23^{\text {iv }}$ of 3.835 (4) \AA in (I); symmetry code: (iv) $-x,-y,-z$], causing significant geometric distortion of the net meshes (Fig. 2). In this way, the aliphatic portions of the ligands fill the centres of each $\mathrm{Cd}_{4}\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)_{4}$ square and generate two hydrophobic pores of ca $3.0 \AA$ diameter. The ad-ad moieties are complementary in shape and additionally they mediate the hydrophobic interactions between neighbouring $\left[\mathrm{Cd}\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ layers, resulting in their being arranged in a mutually parallel mode. The hydrophobic channels aligned along the a axis are occupied by NCS^{-}(or NCSe^{-}) anions, which, in spite of their high nucleophilicity and affinity towards the Lewis soft $\mathrm{Cd}^{\mathrm{II}}$ centres, are left uncoordinated. This is the first example of
uncoordinated behaviour of NCSe^{-}in complexes with nonchelating ligands.

The $\mathrm{Cd}(\operatorname{tr})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ moieties, as a distinct hydrophilic part of the networks, are especially beneficial for mediating different kinds of hydrogen-bonding interactions (Fig. 3). The anions are involved in hydrogen-bond interactions with coordinated

Figure 2
The two-dimensional network in the structure of (I) [the structure of (II) is isomorphous], supported by connecting $\mathrm{Cd}^{\mathrm{II}}$ ions with the extended $\operatorname{tr}_{2} \mathrm{ad}_{2}$ ligands. Aliphatic H atoms have been omitted and dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $1-x, y+\frac{1}{2}, \frac{1}{2}-z$; (vi) $1-x$, $-\frac{1}{2}+y, \frac{1}{2}-z$; (vii) $2+x, y, 1+z$.]

Figure 3
The interconnection of metal-organic layers along the a axis in the structure of (I), supported by multiple $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and weak π-anion stacking between N (NCS^{-}anion) and the triazole heterocycle. Dashed lines indicate hydrogen bonds and π-anion interactions. [Symmetry code: (v) $-1+x$, y, z.]
and uncoordinated water molecules, yielding interconnection of the metal-organic layers into three-dimensional coordination and hydrogen-bonded frameworks. Thus, each aqua ligand behaves as a double hydrogen-bond donor, to the solvent water molecule and to atom N2 of a neighbouring layer (see Tables 1 and 2 for details). The solvent water molecules located in the interlayer region are further bound to atoms N7 and S1 of the pseudohalide anions. These interactions are accompanied by a weak anion $-\pi$ contact between the counter-anion and the π-deficient tr heterocycle $[\mathrm{N} 7 \cdots C g(\operatorname{tr})=3.294$ (4) \AA for (I) and 3.285 (6) \AA for (II); $C g(\operatorname{tr})$ is the centroid of the tr ring], with values similar to that observed in the $\mathrm{Mn}(\mathrm{NCS})_{2}$ complex with 4,4'-bi-1,2,4-triazole (Zilverentant et al., 1998). The interplay between the noncovalent interactions causes a substantial decrease in the interlayer distance ($6.095 \AA$), thus forming the tight packing motifs.

In conclusion, our results demonstrate the potential of the novel organic ligand $3,3^{\prime}$-bis(1,2,4-triazol-4-yl)-1, 1^{\prime}-biadamantane $\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)$, which possesses attractive features such as rigidity, substantial size, thermal stability and special triazole functionality, in the construction of MOFs. The extra-large aliphatic spacers are involved in hydrophobic interactions that are a determinative attribute, giving rise to bulk pillars in the structure. Further functionalization of the $1,1^{\prime}$-biadamantane scaffold promises the expansion of abilities for designing stiff and porous coordination polymers with distinct hydrophobic and hydrophilic surfaces.

Experimental

For the preparation of $3,3^{\prime}$-bis(1,2,4-triazol-4-yl)-1, 1^{\prime}-biadamantane $\left(\operatorname{tr}_{2} \mathrm{ad}_{2}\right)$, a mixture of $3,3^{\prime}$-diamino-1, 1^{\prime}-biadamantane $(0.800 \mathrm{~g}$, $2.66 \mathrm{mmol}), N, N$-dimethylformamide azine ($1.39 \mathrm{~g}, 9.77 \mathrm{mmol}$) and TsOH monohydrate ($0.120 \mathrm{~g}, 0.697 \mathrm{mmol}$) in o-xylene (8 ml) was heated under reflux for 24 h . The reaction mixture was cooled to room temperature and the product was isolated by filtration and dried (yield $0.500 \mathrm{~g}, 46 \%$). Complexes (I) and (II) were prepared in a similar way using a hydrothermal technique. $\mathrm{Cd}(\mathrm{NCS})_{2}(9.9 \mathrm{mg}$, $0.043 \mathrm{mmol}), \operatorname{tr}_{2} \mathrm{ad}_{2}(10.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and water (5 ml) were
added to a Teflon vessel, placed in a steel bomb and heated to 443 K for 24 h . The mixture was cooled slowly to room temperature over a period of 48 h to afford colourless crystals of (I) together with a paleyellow powder (yield $8.0 \mathrm{mg}, 58 \%$). The crystals were separated by repeated slurrying of the product in water followed by careful decantation. In a similar way, colourless crystals of complex (II) were prepared in 33% yield starting from $\mathrm{Cd}(\mathrm{NCSe})_{2}(8.1 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\operatorname{tr}_{2} \mathrm{ad}_{2}(10.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ in an ethanol-water solution $(1: 1 \mathrm{v} / \mathrm{v})$.

Compound (I)

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{NCS})_{2} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1109.74$
Monoclinic, $P 2_{1} / c$
$a=6.8689$ (4) \AA
$b=20.3896$ (12) \AA
$c=18.3330(11) \AA$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.884, T_{\text {max }}=0.977$

$$
\begin{aligned}
& \beta=99.242(2)^{\circ} \\
& V=2534.3(3) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.57 \mathrm{~mm}^{-1} \\
& T=213 \mathrm{~K} \\
& 0.22 \times 0.20 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

13522 measured reflections 5535 independent reflections 4109 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.098$
$S=1.09$
5535 reflections
322 parameters

Compound (II)

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{NCSe})_{2}--$ $2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1203.54$
Monoclinic, $P 2_{1} / c$
$a=6.9147$ (5) \AA
$b=20.4704(14) \AA$
$c=18.4190(15) \AA$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 2003) $T_{\min }=0.012, T_{\max }=0.847$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.128$
$S=1.07$
5235 reflections
322 parameters

$$
\begin{aligned}
& \beta=100.168(2)^{\circ} \\
& V=2566.2(3) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.90 \mathrm{~mm}^{-1} \\
& T=213 \mathrm{~K} \\
& 0.21 \times 0.12 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

13671 measured reflections 5235 independent reflections 3469 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

For both structures, C -bound H atoms were treated as riding in geometrically idealized positions, with triazole $\mathrm{C}-\mathrm{H}=0.94 \AA$ and aliphatic $\mathrm{C}-\mathrm{H}=0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were found in intermediate difference Fourier maps and initially included with a tight $\mathrm{O}-\mathrm{H}$ restraint $[0.8500(1) \AA$ A $]$. In the final

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 W \cdots \mathrm{O} 2$	0.85	1.85	2.689 (2)	167
$\mathrm{O} 1-\mathrm{H} 2 W \cdots \mathrm{~N} 2^{\text {v }}$	0.85	2.02	2.868 (2)	171
$\mathrm{O} 2-\mathrm{H} 3 W \cdots \mathrm{~S}^{\text {v }}$	0.85	2.40	3.2334 (11)	169
$\mathrm{O} 2-\mathrm{H} 4 W \cdots \mathrm{~N} 7$	0.85	1.97	2.817 (4)	173
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4^{\text {ii }}$	0.94	2.41	3.085 (4)	128

Symmetry codes: (ii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $x-1, y, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \cdot$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 W \cdots \mathrm{O} 2$	0.85	1.86	2.703 (4)	170
$\mathrm{O} 1-\mathrm{H} 2 W \cdots \mathrm{~N} 2^{\text {v }}$	0.85	2.08	2.909 (4)	163
$\mathrm{O} 2-\mathrm{H} 3 W \cdots \mathrm{Se}^{\text {v }}$	0.85	2.47	3.321 (2)	174
$\mathrm{O} 2-\mathrm{H} 4 W \cdots \mathrm{~N} 7$	0.85	1.99	2.821 (6)	166
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4^{\text {ii }}$	0.94	2.44	3.109 (5)	128

Symmetry codes: (ii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $x-1, y, z$.
refinement, the positions of the water H atoms were fixed, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT$N T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

The authors acknowledge support from the State Fund for Fundamental Research of Ukraine (DFFD) (grant No. 09DF037-03).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3170). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SMART-NT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-NT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, B., Eddaoudi, M., Reineke, T. M., Kampf, J. W., O’Keeffe, M. \& Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 11559-11560.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Govor, E. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. \& Domasevitch, K. V. (2010). Z. Anorg. Allg. Chem. 636, 209-217.
Huang, Y.-Q., Zhao, X.-Q., Shi, W., Liu, W.-Y., Chen, Z.-L., Cheng, P., Liao, D.-Z. \& Yan, S.-P. (2008). Cryst. Growth Des. 8, 3652-3660.

Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O’Keeffe, M. \& Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239-8247.

Krishnan, S. M., Patel, N. M., Knapp, W. R., Supkowski, R. M. \& LaDuca, R. L. (2007). CrystEngComm, 9, 503-514.

Lysenko, A. B., Senchyk, G. A., Lincke, J., Lassig, D., Fokin, A. A., Butova, E. D., Schreiner, P. R., Krautscheid, H. \& Domasevitch, K. V. (2010). Dalton Trans. pp. 4223-4231.
Millange, F., Serre, C., Marrot, J., Gardant, N., Pelle, F. \& Ferey, G. (2004). J. Mater. Chem. 14, 642-645.

Nielsen, R. B., Kongshaug, K. O. \& Fjellvag, H. (2008). J. Mater. Chem. 18, 1002-1007.
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M. \& Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.

Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. \& Domasevitch, K. V. (2009). Inorg. Chim. Acta, 362, 4439-4448.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yi, L., Yang, X., Lu, T. \& Cheng, P. (2005). Cryst. Growth Des. 5, 12151219.

Zilverentant, C. L., Driessen, W. L., Haasnoot, J. G., Kolnaar, J. J. A. \& Reedijk, J. (1998). Inorg. Chim. Acta, 282, 257-260.

